CONSENSYS
@Dlllgence AUDITS FUZZING SCRIBBLE ABOUT

Denaria 2

1 Executive Summary

1.1 Post-Audit Fix Review Date September 2025

2 Scope

1 Executive Summary

3 Security Considerations

3.1 vAMM Design Complexity and
Risk Assessment

3.2 LP Assymetry

3.3 Isolated Parallel Accounting
3.4 Vault Design

3.5 Absence of Circuit Breakers

3.6 Liquidator Exit Risk

4 Continuous Fuzzing of
Existing Invariants

4.1 Results

4.2 Recommendations

5 Findings

5.1 PnL Avoidance Through Zero
Exposure Exploit
v Fixed

5.2 A Liquidator Can Liquidate a
Position With Infinitely Bad Price

Critical v Fixed

5.3 Closing a Position Can Create
an Infinite Bad Debt

v Fixed

5.4 LP Liquidity and Trader
Liquidity Mix Causes Open
Interest Corruption

v Fixed

5.5 Exposure Can Remain Open
When Closing the Position

v Fixed

5.6 Oracle Inverted Price Validity
v Fixed

5.7 Users Without Collateral May
Lose Their PnL Vv Fixed

5.8 PnL Can Be Artificially
Lowered by Manipulating the

AMM Price ¥ Fixed

5.9 PnL Calculation Can Fail Due
to Lack of Liquidity

Acknowledged

5.10 Removing Collateral for
Liquidated Position Is
Unnecessary Medium

Acknowledged

5.11 Bad Debt in a System Can
Remain Unreported Medium

Acknowledged

5.12 Withdrawal Race Condition in
Case of Bad Debt 'Medium

Acknowledged

5.13 Withdraw/Deposit vs
Decrease/Increase for Collateral

Ratios Medium Acknowledged

5.14 Frontend Fees Are Paid by
Liquidity Providers 'Medium

v Fixed

5.15 Curve State Accumulation
(DyO/Dx0) Issues 'Medium

Partially Addressed

5.16 Liquidity Provider Can Have
Higher Leverage Than Allowed by
the System 'Medium

Acknowledged

This report presents the results of our second engagement with Denaria-finance to review their Decentralized Perpetual Futures
Exchange. Following our initial audit conducted from April 3 to May 20, 2025, this second review was undertaken to assess the
current state of the protocol after the team’s remediation efforts.

The review was conducted over the course of three weeks, from September 1, 2025 to September 26, 2025 by Sergii
Kravchenko and Arturo Roura. In the previous assessment, we identified a large number of issues that indicated the codebase
was still in its early stages of development. Following that review, the team committed to extensive internal testing and security
improvements before returning for this second round of auditing.

The current implementation shows clear progress, with many previous issues addressed and improvements in code structure and
protocol design. However, the protocol’s highly complex AMM design, individualized accounting, and intricate code structure
continue to present significant challenges. The interdependence of subsystems and advanced mathematical operations make it
extremely difficult to ensure correctness and security across all scenarios. Testing and validating such a system requires
sophisticated invariants and comprehensive monitoring to guarantee that all balances and exposures remain consistent.

Despite the improvements, our review uncovered a number of new major issues at various levels—from impactful typos and logic
errors to deeper architectural concerns. The absence of monitoring, circuit breakers, and administrative controls further
increases the risk, as there is currently no way to intervene or halt the protocol in the event of an emergency.

While the protocol has evolved, we believe the system in its current form carries a high level of security risk due to its
complexity and the challenges inherent in thoroughly testing and monitoring such a design. Without substantial additional
work—including adversarial testing, rigorous invariant checks, codebase simplification, and the implementation of robust
monitoring and emergency controls—there is a significant risk that severe vulnerabilities could remain undetected and user
funds could be at risk if the protocol were deployed to mainnet.

11 Post-Audit Fix Review

Following the completion of the audit, the team implemented remediation efforts to address the identified issues. We conducted
a review of these fixes in line with the scope and timeframe previously agreed upon, dedicating additional effort to examine each
of the remediations within the available timeframe. However, several of the fixes were substantial in nature, introducing
conceptual changes to key protocol mechanisms. Given the severe time constraints, our review of these remediation efforts
necessarily prioritized breadth over depth, preventing the thorough analysis that such significant changes warrant. Despite the
limited scope of our review, we identified additional issues that emerged as a result of the implemented fixes (see Fix Review
Findings). This underscores the ongoing security challenges facing the protocol and reinforces our assessment that the
codebase requires further maturation. We strongly recommend that the team invest additional time in internal security work,
comprehensive testing, and engage in another full round of security review or consider a public security competition before
any mainnet deployment.

2 Scope

This review focused on the following repository and code revision:
¢ denaria-finance/denaria-perp 5d143a158d558464e17a4ad9f6d72b83bf42796¢

The detailed list of files in scope can be found in the Appendix.

3 Security Considerations

3.1 vAMM Design Complexity and Risk Assessment

The protocol implements multiple sophisticated mechanisms whose interaction creates complexity that expands the attack
surface. The vVAMM design requires solving third-degree polynomial equations through Newton’s method to calculate trade
returns while maintaining curve initialization at oracle price. The system must also track liquidity provider positions as they
continuously evolve between stable and asset allocations through a matrix-based algorithm that handles flexible LP deposits in
arbitrary ratios, including single-sided liquidity provision.

This complexity compounds through the fee distribution mechanism, which must allocate trading fees across LPs with
heterogeneous liquidity compositions and temporal positions, creating additional computational and accounting overhead that
evolves with each transaction. Since liquidity values can be influenced through trading activity, the curve calculations become
susceptible to manipulation through strategic trading patterns, potentially affecting both trade execution and fee distribution.
Each additional mechanism - from cubic equation solving to matrix-based LP tracking to dynamic fee distribution - objectively
introduces new potential failure points and increases the codebase complexity that must be secured.

In our assessment, the protocol’s design choices raise questions about proportionality between complexity and benefits. We
observe that the system targets extremely low slippage scenarios near oracle price, which targets a trading regime where the
practical outcomes may closely resemble spot price execution. From our perspective, the substantial mathematical

https://github.com/denaria-finance/denaria-perp/tree/5d143a158d558464e17a4ad9f6d72b83bf42796c
https://consensys.io/
https://consensys.io/audits/
https://consensys.io/fuzzing/
https://consensys.io/scribble/
https://consensys.io/about/

5.17 Auto Close Is Not Disabled
After Execution ([[if3 ' ¢ Fixed

5.18 Fee Timing Creates
Directional Trading Bias ({Ii23

Acknowledged

5.19 Lack of Flexibility
Withdrawing PNL (I3 | ¢ Fixed

sophistication may not provide proportional advantages over simpler approaches, particularly given that the protocol’s economic
constraints naturally limit viable usage to small-to-medium trades where we believe the practical difference between complex
vAMM mechanisms and direct spot price execution could be marginal. We note that the incentive structure discourages large
trades relative to pool liquidity, as slippage becomes prohibitive and curve replotting mechanisms incentivize trade
fragmentation, further limiting the system to scenarios where we consider simpler mechanisms would likely perform similarly.

This VAMM architecture, with its comprehensive suite of innovative mechanisms, appears to us to represent a high-complexity
solution that may introduce disproportionate risks relative to what could potentially be achieved through more straightforward
implementations.

» The Denaria team's opinion regarding this security consideration

3.2 LP Assymetry

The protocol’s liquidity provision system fundamentally differs from traditional pooled models by treating LPs as individual
passive traders rather than collective liquidity providers. Single-sided deposits and individualized funding fee calculations based
on each LP’s specific exposure create asymmetries where LPs providing identical amounts can experience vastly different
outcomes. Market conditions and subsequent trading activity determine whether an LP earns or pays funding fees, creating race
conditions and direct competition between liquidity providers. This design transforms liquidity provision from a straightforward
service into a nuanced trading strategy, where LPs must consider market timing, directional exposure, and competitive
positioning against other LPs for favorable fee outcomes. The resulting system obscures traditional incentive alignment and
creates an environment where liquidity providers compete against each other rather than collectively serving traders.

» The Denaria team's opinion regarding this security consideration

3.3 Isolated Parallel Accounting

The system relies heavily on parallel accounting, where each user and subsystem maintains its own internal balances. While these
balances are expected to remain synchronized, there is little enforcement or reconciliation, resulting in frequent mismatches due
to rounding errors. These discrepancies, though small (“dust”), accumulate and are difficult to detect due to the absence of
system-wide integrity checks. Some rounding issues were observed that only surface under specific conditions and would be
difficult to identify without targeted analysis. The lack of safeguards around accounting mismatches presents a long-term
security risk.

» The Denaria team's opinion regarding this security consideration

3.4 Vault Design

The vault’s multi-stablecoin architecture creates operational and stability risks through rigid ratio constraints and assumptions of
perpetual dollar parity. The system lacks depeg detection mechanisms, continuing to treat depegged stablecoins as equivalent
to $1.00 without emergency response capabilities. This creates arbitrage opportunities, skewed collateral valuations, and
systemic risk exposure during stablecoin instability events. Combined with strict ratio enforcement that can block legitimate user
operations, the vault design introduces usability friction while remaining vulnerable to collateral devaluation scenarios that could
destabilize the entire protocol.

» The Denaria team's opinion regarding this security consideration

3.5 Absence of Circuit Breakers

The absence of circuit breakers leaves the protocol defenseless against crisis scenarios. Without pause mechanisms or
emergency controls, problems compound uncontrollably, bad debt accumulates during liquidation failures, exploits continue
draining funds, and market anomalies cascade into protocol-wide instability. Administrators cannot intervene to halt operations
or safely transition the system to recovery, forcing the protocol to continue operating in degraded states until external resolution
occurs, often resulting in catastrophic damage that proper emergency controls could have prevented.

» The Denaria team's opinion regarding this security consideration

3.6 Liquidator Exit Risk

The liquidation mechanism creates exit risk for liquidators who must trade their acquired positions back through the curve to
realize profits. While liquidators receive discounted positions, they face uncertainty in exit execution due to pool liquidity
constraints and market timing. In low-liquidity scenarios, liquidators may be unable to exit positions immediately, exposing them
to adverse price movements that can eliminate discount gains. This exit risk may disincentivize liquidation participation precisely
when pools have insufficient liquidity, potentially leading to delayed liquidations and bad debt accumulation.

» The Denaria team's opinion regarding this security consideration

4 Continuous Fuzzing of Existing Invariants

We implemented a continuous fuzzing workflow to identify potential vulnerabilities and ensure the robustness of the Denaria
system. The workflow is automated and runs daily on the audited code. Upon completion, a summary report is automatically
generated and sent to the development team via Telegram, providing continuous feedback on code stability and invariant

violations. This continuous process has been running since September 1, 2025. We did not create new tests/invariants, but relied
on existing tests/invariants that were created by the Denaria team.

41 Results

e September 2, 2025: The fuzzer identified a failing test (testaddmultipleprices), which was triggered by the fuzzer exceeding a
bound on the maximum number of rejects for Foundry’s assume cheat code. The development team promptly provided a fix
for the affected test (testaddmultipleprices), and we continued fuzzing on the patched code (commit hash

3187938b8050b1d4e537a7826fc9fB7134bd24b)

e September 10, 2025: The fuzzer found a second failing test (testammoutputBoundaries), Which was caused by an arithmetic
overflow in the curve computations (using Newton’s method). The development team reviewed the failing test inputs and
concluded that the input values were not in a range that should happen in practice. The fuzzer found a similar failure (i.e.,
arithmetic overflow in testaMmoutputBoundaries) on September 26, 2025.

4.2 Recommendations

We recommend that the Denaria team incorporates the provided fix for the first failure (in testaddmultipleprices) and updates the
second failing test (testaMmoutputBoundaries) by bounding the input values to a range that is considered “realistic”. This ensures that
the test accurately reflects the and validates the expected behavior of the AMM for “realistic” conditions. Ideally, what is
considered “realistic” should be formalized and arithmetic overflows should be monitored once the system is deployed.

5 Findings

Each issue has an assigned severity:

issues are directly exploitable security vulnerabilities that need to be fixed.

e [issues are security vulnerabilities that may not be directly exploitable or may require certain conditions in order to be
exploited. All major issues should be addressed.

e [Medium iSSues are objective in nature but are not security vulnerabilities. These should be addressed unless there is a clear
reason not to.

[issues are subjective in nature. They are typically suggestions around best practices or readability. Code maintainers
should use their own judgment as to whether to address such issues.

Issues without a severity are general recommendations or optional improvements. They are not related to security or
correctness and may be addressed at the discretion of the maintainer.

5.1 PnL Avoidance Through Zero Exposure Exploit ¢ Fixed

Resolution

Fixed in commit f3869fba8db140ed26fbd92cd39793f0679dc749. In calcHypotheticalMr , the order of checks has been
changed to return e as MR if the position has bad debt, instead of directly assuming that a e exposure position is always
safe.

Description

The protocol’s margin ratio calculation contains a critical flaw that allows users to avoid realizing trading losses by achieving zero
asset exposure. When calcHypotheticalMr() determines that a position has no asset exposure (balanceAsset = debtAsset), it returns the
maximum margin ratio without considering the position’s actual PnL, effectively treating the position as risk-free regardless of
accumulated losses.

Exploit Mechanism:

1. User opens a leveraged position that subsequently moves underwater due to adverse price movements

2. User opens an offsetting trade in the opposite direction to eliminate asset exposure (e.g., if short 1000 vAsset, opens a 1000
vAsset long position)

3. The offsetting trade locks in losses and may incur additional trading costs, worsening an already negative PnL
4. Despite negative PnlL, calcHypotheticalMr() returns mmroecimals (100% margin ratio) because positionvalue = @

5. User can withdraw all collateral since _checkMr() passes, leaving the protocol to absorb the bad debt

src/Vault.sol:L183-L192

function removeCollateral(uint256 amount, bytes memory unverifiedReport) public nonReentrant {
IOracleMiddleware(PerpPair(perpPair).oracle()).verifyReportIfNecessary(unverifiedReport);
require(amount <= userCollateral[_msgSender()], "RC1");
if(amount != userCollateral[_msgSender()]){
require(amount >= minCollateralMovement, "RC2");

}

require(amount <= totalCollateral, "RC3");

require(_checkMR(amount, _msgSender()), "RC4");

Root Cause:

src/util/UtilMath.sol:L170-L181

https://getfoundry.sh/reference/cheatcodes/assume
https://github.com/denaria-finance/denaria-perp/commit/f3869fba8db140ed26fbd92cd39793f0679dc749

(uint256 pnl, bool pnlSign) = _calcPnL(
balanceStable, balanceAsset, debtStable, debtAsset, fundingFee, fundingFeeSign, price, oracleDecimals, perpPair

IE

uint256 positionValue = diffAbs(balanceAsset, debtAsset) * price / oracleDecimals;
(uint256 totColl, bool totCollSign) = signedSum(collateral, true, pnl, pnlSign);
if (positionValue == 0) {

return MMRDecimals;

}

This design assumes that zero asset exposure equals zero risk, ignoring that users may have accumulated substantial losses
through trading activity.

Impact: This vulnerability enables a sophisticated arbitrage strategy where users open separate leveraged positions in both
directions. Upon market movement, users can close winning positions through normal procedures to capture profits, while
exploiting the zero-exposure flaw on losing positions to withdraw collateral without realizing losses. This asymmetric risk profile
allows users to systematically extract value from the protocol by socializing losses while privatizing gains.

5.2 A Liquidator Can Liquidate a Position With Infinitely Bad Price ¢ Fixed

Resolution

Partially fixed in commit f3869fba8db140ed26fbd92cd39793f0679dc749. They have added a check that makes sure that the
resulting user position after being liquidated cannot have bad debt, but the check is not well implemented and a check like
this does not prevent liquidators from manipulating the price to steal the full users collateral and generating bad debt
because of the liquidation discount, therefore creating issue issue 6.1.

The fix in commit 689db8b3a5eced33e1d8744b2c89821f261d58a9 for issue issue 6.1 also fixes this issue.

Description

Similar to another issue (issue 5.3), a liquidator can liquidate any liquidatable position with an infinite profit for themselves and
an infinite loss for the liquidated user. Since the liquidation process uses the same logic as regular trades, the liquidator can
manipulate the liquidity size to closely match the liquidation size, resulting in an “almost infinite” price.

Recommendation

The recommendation aligns with those from related issues: reconsider the price mechanism for calculating PnL and liquidation
price, and implement measures to limit bad debt to reasonable amounts.

5.3 Closing a Position Can Create an Infinite Bad Debt ¢ Fixed

Resolution

Fixed in commit f3869fba8db140ed26fbd92cd39793f0679dc749. An additional check was added to _closeAndwithdraw tO
make sure that a user cannot close his position if this position creates bad debt. Liquidations aren’t affected by this
mechanism.

Description

When a user wishes to close their position, they may call either closetrade Or closeandwithdraw . Both functions allow the user to
close any open position. At the end of closetrade , Only the Maintenance Requirement (MR) is checked

src/perpModules/perpTrade.sol:L76-L79

require(
UtilMath.calcMR(user, spotPrice, address(this), getCollateral(user), lastOperationTimestamp) > MMR,
"oT1"

In closeAndwithdraw , NOt even the MR is checked, as the position is assumed to be zero and funds are withdrawn.

While these functions ensure that trades cannot execute at a price better than the spot price, they do not prevent trades from
executing at extremely unfavorable prices for the trader. For example, if a trader attempts to buy nearly all assets in the liquidity
pool, the average price can become arbitrarily large. An attacker can manipulate the trade size to approach the pool’s total
assets, effectively driving the price to “near infinity.”

This behavior enables the creation of unbounded bad debt, which is absorbed by the protocol, while liquidity providers receive
excessive profits. An attacker could exploit this to drain the protocol.

Example attack scenario:

1. The liquidity pool contains 1000 assets.

2. The attacker uses a flash loan and multiple accounts to orchestrate the attack.
3. Account_1 deposits 1000 assets as liquidity (pool: 2000 assets).

4. Account_2 sells 1000 assets (pool: 3000 assets).

https://github.com/denaria-finance/denaria-perp/commit/f3869fba8db140ed26fbd92cd39793f0679dc749
https://github.com/denaria-finance/denaria-perp/commit/689db8b3a5eced33e1d8744b2c89821f261d58a9
https://github.com/denaria-finance/denaria-perp/commit/f3869fba8db140ed26fbd92cd39793f0679dc749

5. Account_3 buys 1999.999999 assets (pool: 1000.000001 assets remain).

6. Account_2, with a -1000 position, buys 1000 assets to close. Purchasing 1000 assets from a pool with 1000.000001 assets
results in a “near infinite” price and bad debt, which the protocol accepts.

7. Account_1, as the liquidity provider, receives excessive profit and can drain the Vault.
These actions could theoretically be performed within a single transaction.

Recommendation

The core issue is the lack of PnL consideration when permitting users to close positions. Addressing this is non-trivial: while
limiting per-trade losses can prevent infinite prices, it does not fully mitigate the risk, as attackers could still exploit the protocol
with smaller, repeated attacks. It is a design decision to determine which trades should be allowed as legitimate stop-losses and
which should be restricted to protect protocol solvency. Any trades that result in bad debt are a potential attack vector.

5.4 LP Liquidity and Trader Liquidity Mix Causes Open Interest Corruption gzm Vs

Resolution

Partially fixed in commit f3869fba8db140ed26fbd92cd39793f0679dc749. They separated the LP balances and debts from
the trader balances and debts, and _removeLiquidity now merges the LP balances and debts with the trader ones. However,
a new issue issue 6.3 was created because of inconstancies when applying this new accounting system

Description

The _removeLiquidity() function converts LP positions to trader balances without updating the protocol’s trader exposure
accounting. Since the converted position now represents active trader exposure rather than passive LP counterparty exposure, it
should be included in totalTraderexposure calculations for accurate protocol state tracking.

Impact: This accounting oversight creates incomplete exposure tracking where totaltraderexposure underrepresents actual trader
positions in the system. The resulting funding rate distortion occurs because funding calculations rely on incorrect exposure
data, leading to mispriced risk and improper incentive structures. Subsequent trades operate with a corrupted open interest
baseline, creating cascading accounting errors that compound over time and fundamentally compromise the protocol’s
understanding of total market exposure, making risk assessment unreliable.

Example: In a pool with a stable price of 1, no slippage:

1. LP deposits 1000 vAsset and registers 1000 vAsset debt
2. Trades in the pool change his position to now have 1000 vStable liquidity and 1000 vAsset debt (net -1000 vAsset exposure)

3. LP removes liquidity — becomes trader with 1000 vStable balance and 1000 vAsset debt. totalTraderExposure is not updated
to reflect this new -1000 vAsset trader position

4. Trader closes position by trading 1000 vStable — 1000 vAsset to cover debt
5. This trade increases totalTraderkxposure by +1000, despite the trader completely exiting

6. Protocol now shows inflated open interest when the position is fully closed

5.5 Exposure Can Remain Open When Closing the Position gzm ek

Resolution

Fixed in commit f3869fba8db140ed26fbd92cd39793f0679dc749. The mechanism to close the exposure in _closeAndwithdraw
has been redesigned, now the function is centered around exposure and not around debts and balances. It guarantees that
any long or short exposure is closed by the end of the function by trading back any remaining exposure.

Description

In the _closeAndwithdraw function, various combinations of pos.balanceAsset , pos.debtAsset , pos.balanceStable , and pos.debtStable are
handled.

src/perpModules/perpTrade.sol:L438-L488

https://github.com/denaria-finance/denaria-perp/commit/f3869fba8db140ed26fbd92cd39793f0679dc749
https://github.com/denaria-finance/denaria-perp/commit/f3869fba8db140ed26fbd92cd39793f0679dc749

if (pos.balanceAsset > pos.debtAsset) {
unchecked {
pos.balanceAsset -= pos.debtAsset;
}
pos.debtAsset = 0;
uint256 minTradeReturn = pos.balanceAsset*price/oracleDecimals * (1e5 - maxSlippage)/1e5;

uint256 tradeReturn = _trade(false, pos.balanceAsset, minTradeReturn, globallLiquidityStable, frontendAddress, user, price)
emit ExecutedTrade(user, 0, false, pos.balanceAsset, tradeReturn, price, 1);
} else {
unchecked {
pos.debtAsset -= pos.balanceAsset;
}

pos.balanceAsset = 0;

// Repay stable debt
if (pos.balanceStable > pos.debtStable) {
unchecked {
pos.balanceStable -= pos.debtStable;

}
pos.debtStable = 0;

if (pos.debtAsset > @) {

uint256 inputNeeded = ((
CurveMath.computeExactAmountInLong(
pos.debtAsset,
price,
oracleDecimals,
globalliquidityStable,
globalliquidityStable,
globalliquidityAsset,
curveParameters.longCurveParameterA,
curveParameters.longCurveParameterB,
1e8
) + flatTradingFee) * decimals.tradingFeeDecimals
) / (decimals.tradingFeeDecimals - tradingFee);

uint256 minTradeReturn = inputNeeded*oracleDecimals/price * (1e5 - maxSlippage)/1e5;

unchecked {
uint256 tradeReturn = _trade(true, inputNeeded, minTradeReturn, globalliquidityAsset, frontendAddress, user, price
emit ExecutedTrade(user, @, true, inputNeeded, tradeReturn, price, 1);

require(UtilMath.diffAbs(pos.balanceAsset, pos.debtAsset)*price/oracleDecimals < 1e10, "CW2");

}
} else {
unchecked {
pos.debtStable -= pos.balanceStable;

}
pos.balanceStable = 0;

However, when both pos.balanceAsset < pos.debtAsset and pos.balanceStable < pos.debtStable , NO action is taken, leaving the exposure
pos.balanceAsset - pos.debtAsset UNclosed. This leads to two main issues:

1. The user pays a “theoretical” loss as calculated by the caicenL function, rather than the actual realized loss from closing the
position, which should include fees and potentially increased slippage.

src/perpModules/perpTrade.sol:L490-L491

// Calculate PnL
(uint256 pnl, bool pnlSign) = calcPnL(user, price);

2. The exposure remains open, meaning the system’s overall open interest is not properly balanced.

Recommendation

Ensure that all exposures are fully closed when a position is closed.

5.6 Oracle Inverted Price Validity qzm w#ea

Resolution

Fixed in commit f3869fba8db140ed26fbd92cd39793f0679dc749.

Description

The oracle’s inverted price validity logic creates a critical DoS vulnerability where any report submission immediately makes
prices unavailable until expiration.

Root Cause: Price validity requires expiration to have ALREADY passed

src/CL_oracle_middleware/TWAPOracleMiddleware.sol:L140-L144

function getPrice () external view returns (int192 price) {
require (((lastDecodedPrice != 0) &&
(lastDecodedValidFromTimestamp >= block.timestamp-maxTimeDelta) &&
(lastDecodedValidFromTimestamp <= block.timestamp) &&
(lastDecodedExpiresAt < block.timestamp)),

https://github.com/denaria-finance/denaria-perp/commit/f3869fba8db140ed26fbd92cd39793f0679dc749

// But new reports can only be submitted when expired if (block.timestamp >= lastDecodedExpiresAt) {
verifyReport(unverifiedReport); }

Attack Vector:

1. Wait for expiration window when new reports can be submitted

2. Submit any valid report with future expiration date

3. Price becomes immediately invalid and remains so until new expiration
4. All protocol operations fail when calling getPrice()

5. Repeat at each expiration to maintain permanent DoS
Impact:

e Complete protocol DoS through legitimate report submission
e Self-DoSing system - every new report breaks price availability
e No viable workaround - protocol fundamentally unusable

e Attackers can maintain permanent downtime with minimal cost

5.7 Users Without Collateral May Lose Their PnL ¢z (vese

Resolution

Fixed in commit f3869fba8db140ed26fbd92cd39793f0679dc749. If any of the usercollateralratio iS Missing, it set the user’s
collateral ratios to equal the vault’s collateral ratios.

Description

When withdrawing collateral from the Vault, it is assumed that the usercollateralratio mapping is not empty. However, if
userCollateralRatio IS €mpty, the _removecollateral function will still execute successfully:

src/Vault.sol:L220-L240

function _removeCollateral(uint256 amount, address user) private returns (uint256[] memory removedCollateral) {
updateSnapshot();
removedCollateral = new uint256[](stableCoins.length);
uint256[] memory newGlobalRatios = new uint256[](stableCoins.length);

bool enoughCollat = _computeCollateralRemoval(amount, user, removedCollateral, newGlobalRatios);

bool goodRatios = newRatiosAllowed(newGlobalRatios, false);

if (enoughCollat && goodRatios) {
_updateGlobalRatios(newGlobalRatios);

} else {
_updateUserRatios(amount, user, removedCollateral);

}
totalCollateral -= amount;
userCollateral[user] -= amount;

return removedCollateral;

In this scenario, the user’s collateral is reduced by the specified amount , but the removedcollateral array—which should contain the
amounts for each stablecoin—remains empty. As a result, the funds are considered withdrawn, but no actual stablecoin is
transferred, leading to a loss of the amount for the user.

A user can have an empty userCollateralRatio iN two cases:

1. The user never deposited collateral and only received fees.

2. The user withdrew all collateral while still maintaining a position or providing liquidity (e.g., due to positive PnL covering the
position). Later, when the user attempts to close everything and withdraw their PnL, the funds will be lost.

Recommendation

Ensure that usercollateralratio iS never empty, or default to using totalcollateralratio When it is. This will prevent users from losing
funds in these edge cases.

5.8 PnL Can Be Artificially Lowered by Manipulating the AMM Price crm (v

Resolution

Fixed in commit f3869fba8db140ed26fbd92cd39793f0679dc749. A usespotprice bool has been added to the caicen function
as a parameter where it will determine if the price for the PnL will use spot price or not. MR checks will use spot price while
_updatesSnapshots Will use the curve price.

Description

In addition to the concerns raised in issue 5.9 and issue 5.2, the current method of calculating PnL using the pool price instead of
the spot price introduces a significant risk. Even healthy or profitable positions can be immediately classified as “bad debt” if

https://github.com/denaria-finance/denaria-perp/commit/f3869fba8db140ed26fbd92cd39793f0679dc749
https://github.com/denaria-finance/denaria-perp/commit/f3869fba8db140ed26fbd92cd39793f0679dc749

their size approaches the available liquidity in the pool. This is because simulating the immediate closure of a position allows the
price to be manipulated to extremely unfavorable levels.

A liquidator can exploit this vulnerability to target any position. While system-wide bad debt may be limited, and draining the

entire protocol may not be possible, a liquidator could still steal all the funds of a specific user by liquidating their position under
these conditions.

Recommendation

This issue further reinforces the recommendation to use the spot price for PnL and liquidation calculations.

5.9 PnL Calculation Can Fail Due to Lack of Liquidity ¢z acknowledged

Resolution

Acknowledged. The Denaria team’s comment: “The protocol is not meant to work when the liquidity is extremely low. If you
could not close your position due to lack of liquidity your PnL is not defined.”

Description
When calculating PnL, the system simulates closing the position using the current state of the liquidity pool:

src/util/UtilMath.sol:L224-L246

if(diffAssetSign){
shortReturn = CurveMath.computeShortReturn(diffAsset,

price,
oracleDecimals,
getTotallLiquidityStable(perpPair),
getTotallLiquidityStable(perpPair),
getTotallLiquidityAsset(perpPair),
SA,
sB,
1e8);

}

else{

require(diffAsset <= getTotalLiquidityAsset(perpPair), "PNL1");

shortReturn = CurveMath.computeExactAmountInLong(diffAsset,
price,
oracleDecimals,
getTotallLiquidityStable(perpPair),
getTotallLiquidityStable(perpPair),
getTotallLiquidityAsset(perpPair),
1A,
1B,
1e8) ;

Within this logic, a require statement ensures there is sufficient liquidity for the trade. However, this check is only applied in one
trade direction, not both. More importantly, if there is insufficient liquidity, the PnL calculation will revert.

The protocol is intended to function even when liquidity is depleted. In such scenarios, it becomes impossible to calculate the
closing price, which in turn prevents the liquidation of positions. This limitation can result in unresolvable positions and potential
bad debt for the protocol.

Recommendation

PnL calculation should always be possible, regardless of liquidity conditions. For example, the system could use the spot price to
simulate closing the position, ensuring that liquidation and debt resolution mechanisms remain functional.

5.10 Removing Collateral for Liquidated Position Is Unnecessary wedium Acknowledged

Resolution

Acknowledged. The Denaria team’s comment: “While unnecessary we deem that this addition provides a significant benefit
to the ux. The considered stablecoins for the protocol are being carefully chosen to not cause issues, such as infinite gas
consumption.”

Description
When liquidating a user’s position, the collateral is removed from the vault:

src/perpModules/perpLiquidation.sol:L105-L108

if(fraction == decimals.liquidationDecimals){
_closeAndWithdraw(1e5, 1e10, _msgSender(), user);
IVault(vault).removeAllCollateralForUser(user);

That is unnecessary and carries an additional risk by performing more actions, running out of gas, needing more code, and
creating reentrancy attack vectors. In addition, the removeAllcollateralfForuser is not protected by the reentrancy guard.

The main danger is that the mechanism that prevents ERC20 transfers from reverting is not bulletproof. For example, the calls can
still run out of gas:

src/Vault.sol:L249-L257

if (removedCollateral[i] > 0){

(bool success,) = address(stableCoins[i].stableCoin).call(
abi.encodeWithSelector (IERC20.transfer.selector, user, removedCollateral[i])

IE

if(!success){
IERC20(address(stableCoins[i].stableCoin)) .approve(lostAndFound, removedCollateral[i]);
ILostAndFound(lostAndFound) .depositLostFunds(user, address(stableCoins[i].stableCoin), removedCollateral[i]);
emit BlockedCollateralRemoval(address(stableCoins[i].stableCoin), user, removedCollateral[i]);

Recommendation

Don’t remove collateral for the user in case of liquidations.

5.11 Bad Debt in a System Can Remain Unreported wedium = Acknowledged

Resolution

Acknowledged. The Denaria team’s comment: “This is true due to the lack of automatic updates. When the user gets
liquidated his bad debt gets accounted for. This is only an issue if liquidations fail.”

Description
Bad debt is only reported in the _closeAndwithdraw function:

src/perpModules/perpTrade.sol:L498-L501

if (getCollateral(user) < pnl && !pnlSign){
(insuranceFund, insuranceFundSign) = UtilMath.signedSum(insuranceFund, insuranceFundSign, pnl - getCollateral(user), false

}
IVault(vault).addPnlToCollateral(user, pnl, pnlSign);

However, a user can close their position using closetrade and never call closeandwithdraw . Since there are no funds to retrieve, there
is no incentive to call closeandwithdraw . As a result, the system may have bad debt that is never recognized or accounted for.
Recommendation

Ensure that bad debt is always acknowledged, regardless of how the position is closed.

512 Withdrawal Race Condition in Case of Bad Debt wicdium acknowledged

Resolution

Acknowledged. The Denaria team’s comment: “This is true for most protocols, we decided not to apply penalties to
withdrawals.”

Description

When bad debt occurs, the system treats it as a (temporary) loss. Users are able to withdraw their collateral without penalties,
resulting in an inconsistency between the Vault’s token balances and the collateral amounts attributed to users. If many users
begin withdrawing funds during periods of increasing bad debt, the Vault may eventually be depleted of funds, while some users
are still shown as having collateral in the system. Ultimately, these remaining users will bear the loss caused by the bad debt.

The protocol includes an insurance fund, funded by a small fee on every trade, to help cover bad debt and maintain the system’s
balance. While this is a desirable behavior, there may still be scenarios where a spike in bad debt triggers a wave of withdrawals,
leading to a withdrawal spiral and a race condition among users.

Recommendation

As an additional safeguard alongside the insurance fund, consider implementing a mechanism to proportionally penalize all users
withdrawing from the system when bad debt is present. This would help distribute losses more fairly and discourage withdrawal
spirals during periods of insolvency.

5.13 Withdraw/Deposit vs Decrease/Increase for Collateral Ratios wediim Acknowledged

Resolution

Acknowledged. The Denaria team’s comment: “The current system does not cause issues to the accounting, it may have
different pros and cons, but we decided to stick with our current implementation.”

Description

In the Vault there is a limit how much the ratios of stablecoins can increase or decrease as the result of withdrawals:

src/Vault.sol:L461-L475

function newRatiosAllowed(uint256[] memory newRatios, bool isDeposit) private view returns (bool allowed) {
uint256 threshold;
for (uint256 i; i < newRatios.length; i++) {
if (isDeposit) {
threshold = stableCoins[i].depositRatioThreshold;

} else {
threshold = stableCoins[i].withdrawalRatioThreshold;

}

if (UtilMath.diffAbs(ratiosSnapshot[i], newRatios[i]) > threshold) {
return false;

}
}

return true;

It's called depositRatioThreshold and withdrawalRatioThreshold .

While the idea seems promising, the increase in one stablecoin means a corresponding decrease in others. While both are
happening during the same deposit or withdrawal.

Recommendation

Consider changing deposit/withdrawal thresholds to increase/decrease thresholds.

5.14 Frontend Fees Are Paid by Liquidity Providers wedium (Ve

Resolution

Fixed in f3869fba8db140ed26fbd92cd39793f0679dc749. adjsize was modified to contemplate the frontend fee when the

frontendAddress IS © .

Description

During the “buy” trade, frontend fees are not accounted for correctly when the frontend address is zero. The current calculation
causes LP providers to pay the frontend fees instead of the trader:

src/perpModules/perpTrade.sol:L321-L325

if (direction) {
unchecked {
uint256 adjSize = size - tradingFeeAmount*(decimals.feeFractionsDecimals - feelLP) / decimals.feeFractionsDecimals;

uint256 aY = (globalSharesStable * adjSize * SafeCast.toUint256(decimals.liquidityMDecimals))
/ (globalSharesAsset * stableliq);

Recommendation

The adjusted size should be increased by the frontend fees when the frontend address is zero.

5.15 Curve State Accumulation (DyO/DxO0) Issues iiedium partially Addressed

Resolution

Partially addressed: Although the ciloseandwithdraw function was modified to consider the accumulators, the Denaria team has
decided to keep the overall structure, as they deem its contribution to preventing splitting a trade into smaller ones from
being profitable to be relevant enough to justify the added complexity.

Description

The price formula in the protocol is designed so that every new trade starts with the spot price, and slippage increases with trade
size. The downside is that a large trade can be split into multiple smaller trades to achieve a better average price. To mitigate this,
the protocol implements an additional mechanism: the curve does not recompute after every trade. If the curve remains
unchanged, follow-up trades do not start at the spot price but continue from where the previous trade ended, like in a classic
AMM, as if multiple trades in the same direction were a single large trade. The curve recomputes either over time, or when a trade
in the opposite direction occurs, or when liquidity is added/removed.

While this mechanism makes trade splitting more difficult, it does not fully solve the issue and introduces additional problems:

e |t is still easy to reset the curve by making a small trade in the opposite direction or by adding a small amount of liquidity.
While this incurs extra fees, for large trades it can still be worthwhile.

e The mechanism adds significant complexity. To simulate non-recomputing of the curve, previous trades must be stored and
accumulated, then accounted for in subsequent trades. This is done via accumulating dxe and dye values, which are
added/subtracted from relevant calculations. These calculations are complex and error-prone.

src/perpModules/perpTrade.sol:L214-L227

https://github.com/denaria-finance/denaria-perp/commit/f3869fba8db140ed26fbd92cd39793f0679dc749

tradeReturn = CurveMath.computelLongReturn(
size - tradingFeeAmount + dy@,
spotPrice,
oracleDecimals,
initialGuess,
stablelLiq - dy®@,
assetlLiq + dx0,
curveParameters.longCurveParameterA,
curveParameters.longCurveParameterB,
1e8

) - dx@;

dy@ += size - tradingFeeAmount;

}

dx@ += tradeReturn;

src/perpModules/perpTrade.sol:L246-L260

shortTotalTradeReturn = CurveMath.computeShortReturn(
size + dx0,
spotPrice,
oracleDecimals,
initialGuess + dy®©,
stableliq + dy@,
assetlLiq - dxo,
curveParameters.shortCurveParameterA,
curveParameters.shortCurveParameterB,
1e8

) - dye;

//Might miss LP fees, but even if it does the effect of this is minimal (impact of fees on liquidity and thus slippage should be
dx0 += size;
dy@ += shortTotalTradeReturn;

Examples of issues include:

e To accurately simulate multiple trades as a single trade, the curve should return to the exact parameters it had at the start of
the first trade. However, this is not achieved because fees are not accounted for in the calculation. The curve will be similar,
but not identical, to what it should be. While the difference (fees) may seem small, a malicious actor manipulating liquidity
size could potentially exploit this.

e The dye / dxe calculation is not performed when predicting input amounts for the closeandwithdraw function, but is performed
during the actual trade, leading to inaccurate results or failed transactions.

src/perpModules/perpTrade.sol:L461-L481

uint256 inputNeeded = ((
CurveMath.computeExactAmountInLong(
pos.debtAsset,
price,
oracleDecimals,
globalliquidityStable,
globalliquidityStable,
globalliquidityAsset,
curveParameters.longCurveParameterA,
curveParameters.longCurveParameterB,
1e8
) + flatTradingFee) * decimals.tradingFeeDecimals
) / (decimals.tradingFeeDecimals - tradingFee);

uint256 minTradeReturn = inputNeeded*oracleDecimals/price * (1e5 - maxSlippage)/1e5;

unchecked {
uint256 tradeReturn = _trade(true, inputNeeded, minTradeReturn, globallLiquidityAsset, frontendAddress, user, price);
emit ExecutedTrade(user, O, true, inputNeeded, tradeReturn, price, 1);

require(UtilMath.diffAbs(pos.balanceAsset, pos.debtAsset)*price/oracleDecimals < 1e10, "CW2");

e The dye / dxe calculation is not considered in liquidation or PnL calculations. While this behavior may be desirable, it
introduces inconsistency and additional complexity in the code.

Recommendation

Reconsider the dye / dxe mechanism.

5.16 Liquidity Provider Can Have Higher Leverage Than Allowed by the System wedium = Acknowledged

Resolution

Acknowledged. The Denaria team’s comment: “The maximum leverage we imposed on LP deposits is not a hard limit on what
LPs can achieve. While it is vital that there is a boundary on LPs leverage to prevent them from depositing infinite liquidity,
their positions are in general less risky for the system, as their exposure is usually far from their maximum potential exposure,
against which we perform this leverage check. Our leverage check makes it so that you cannot instantly achieve a higher
leverage as a direct result of your actions, but you can only do so through losing part of your collateral due to a negative PnL.
If a user is dedicated enough to achieve a better capital efficiency we do not prevent them from doing so, at the cost of
having a much riskier position, which is more susceptible to liquidations. In fact, any position’s leverage is still bound by the
MMR, which is checked against all position’s MR for liquidations in the same way. The fact that LP maximum leverage is lower
than Trader’s maximum leverage is due to the fact that we want to provide a “safer” experience for casual LPs, further
reducing the risk of their liquidation.”

Description
There are two mechanisms intended to ensure sufficient collateral in the Vault for each user:

e Margin Ratio (MR) Limit - Calculates the ratio of a user’s exposure to their collateral. If this ratio falls below a certain
threshold, the position is subject to liquidation.

src/util/UtilMath.sol:L186-L187

marginRatio = totColl * MMRDecimals
/ (positionValue);

src/perpModules/perpTrade.sol:L76-L79

require(
UtilMath.calcMR(user, spotPrice, address(this), getCollateral(user), lastOperationTimestamp) > MMR,
n OT—I n

e Maximum LP Leverage - Sets a cap on leverage for liquidity provision. For example, with a maximum leverage of 10, a user
must have at least $100 collateral to provide $1000 in liquidity.

src/perpModules/perpLiquidity.sol:L81-L85

VirtualTraderPosition storage position = userVirtualTraderPosition[sender];
uint256 debtStable = position.debtStable > position.balanceStable ? position.debtStable-position.balanceStable : 0;
uint256 debtAsset = position.debtAsset > position.balanceAsset ? position.debtAsset-position.balanceAsset : 0;

require(debtStable + debtAsset*spotPrice/oracleDecimals <= getCollateral(sender)*maxLpLeverage, "L3"); //To deposit liquidity)

However, there are several issues with these mechanisms:

1. Lack of Synchronization: These two mechanisms operate independently and are not coordinated. Users face two sources of
risk: open positions and liquidity that can become exposure over time. Ideally, both should be independently collateralized,
but currently, the same collateral is used to cover both, effectively “double-counting” the collateral.

2. Infrequent Leverage Checks: The liquidity leverage check is only enforced at the time of providing liquidity and when
collateral is withdrawn. This means that in between these events, a user’s liquidity leverage can exceed the intended
maximum without detection by the system. For example, a user may use their PnL as collateral to provide liquidity at
maximum leverage. If the PnL then decreases, the user can end up with a significant liquidity in the pool and very low
collateral backing it.

Recommendation

Ideally, liquidity and position exposure should each require their own dedicated collateral and be tracked continuously. If there is
insufficient collateral to support the liquidity, the protocol should automatically reduce or remove the user’s liquidity position.

517 Auto Close Is Not Disabled After Execution g (Ve

Resolution

Fixed in commit f3869fba8db140ed26fbd92cd39793f0679dc749.

Description
The auto close allows others to close the user’s position under certain conditions:

src/perpModules/perpAutoClose.sol:L44-L56

function autoCloseUserPosition(address user, address frontendAddress, bytes memory unverifiedReport) external nonReentrant {
IOracleMiddleware(oracle).verifyReportIfNecessary(unverifiedReport);
require(autoCloseUsersDataluser].authorized, "A2");
(uint256 userPnL, bool userPnLSign) = calcPnL(user, getPrice());
if (userPnLSign){

require(autoCloseUsersDataluser].profitTh != @ && userPnL >= autoCloseUsersData[user].profitTh, "A3");
}
else{

require(autoCloseUsersDatafuser].lossTh != @ && userPnL >= autoCloseUsersData[user].lossTh, "A4");
}

_applyAutoClosureFees(_msgSender(), user);
_closeAndWithdraw(autoCloseUsersData[user].maxSlippage, autoCloseUsersData[user].maxLiqFee, frontendAddress, user);

The issue is that it's not deleted afterward. Enabling this behavior again later, unintentionally.

Recommendation

Delete the autociloseusersbata after executing.

5.18 Fee Timing Creates Directional Trading Bias i acknowledged

Resolution

https://github.com/denaria-finance/denaria-perp/commit/f3869fba8db140ed26fbd92cd39793f0679dc749

Acknowledged. The Denaria team’s comment: “We are aware of such asymmetry. We performed some computations to
check the relevance of this discrepancy and we found that the magnitude of the difference is proportional to the product of
slippage and fees, so it can be neglected without causing significant issues. "

The protocol applies different fee timing for long and short trades, creating systematic bias that favors short trading in high
slippage environments and disadvantages long positions.

Long trades calculate fees on the input amount before executing trades on reduced liquidity, while short trades execute on full
input amounts and calculate fees from the resulting output. This asymmetry means long trades suffer from both upfront fee
reduction and subsequent slippage on the smaller traded amount, whereas short trades execute with full input amounts and only
pay fees on the slippage-affected returns. In high slippage scenarios, this creates a meaningful economic advantage for short
positions since they pay fees on slippage-reduced returns rather than full input amounts like longs.

Impact: The inconsistent fee timing between long and short trades creates a slight asymmetry in fee treatment, with short
positions receiving marginally lower fees during high slippage scenarios. While the economic impact is minimal under normal
market conditions, the asymmetric structure adds system complexity and creates theoretically unequal treatment between
trading directions.

5.19 Lack of Flexibility Withdrawing PNL ¢z (e

Resolution

Fixed in commit f3869fba8db140ed26fbd92cd39793f0679dc749. A new realizePn. function was added which applies the
PnL to the vault’s collateral.

Description
The only place where PnL can be attributed to the collateral in the Vault is the _closeandwithdraw function:

src/perpModules/perpTrade.sol:L501

IVault(vault).addPnlToCollateral(user, pnl, pnlSign);

src/Vault.sol:L326-L338

function addPnlToCollateral(address user, uint256 pnl, bool pnlSign) external onlyPerpPair {

if (pnlSign) {
userCollateral[user] += pnl;

} else {
if(userCollateral[user] >= pnl){
userCollateral[user] -= pnl;
}
else{
userCollateral[user] = 0;

}

So the only way to retrieve PnL is by closing the position and withdrawing from the system fully. This approach may not be
desirable for many users. There are some situations where users would want to withdraw part of their PnL when rebalancing their
position.

Examples

1. When a user has a large position with profit, it would make sense to withdraw part of the profit, not needed to back up the
position, to put this profit to work somewhere else. Currently, the only way to do this is to close the full position and then
reopen it again. This is a very costly solution as it would require paying fees for these big trades plus double the slippage. So
while this behavior is usually achievable, it's very costly for no real reason.

2. When there is not enough liquidity in the pool to close the position, even if the residual position is quite small, the user’s PnL
can be huge but absolutely impossible to withdraw.

Recommendation

Consider adding more flexibility in transferring user’s PnL to the Vault.

5.20 OpenTrade Mechanism Is Not Consistent Onchain Wi

Resolution

Fixed in commit f3869fba8db140ed26fbd92cd39793f0679dc749.

Description
There are 2 places where opentrades is used:
e Opening trade:

src/perpModules/perpTrade.sol:L404-L408

https://github.com/denaria-finance/denaria-perp/commit/f3869fba8db140ed26fbd92cd39793f0679dc749
https://github.com/denaria-finance/denaria-perp/commit/f3869fba8db140ed26fbd92cd39793f0679dc749

function logTradePosition(address user) private returns(bytes32 id){
cumulativeTradeCount++;
id = keccak256(abi.encodePacked(user, cumulativeTradeCount, address(this), block.chainid));
openTrades[id] = user;

e Closing trade:

src/perpModules/perpTrade.sol:L138

delete openTrades[tradelD];

This mechanism is not used in any meaningful way on-chain. It also does not account for liquidations, auto trades and
closeAndWithdraw function.

Additionally, in opentrade function the trade is added to the opentrades inside the parameter calculation of the event function,
which is bad code style:

src/perpModules/perpTrade.sol:L82-L90

emit ExecutedTrade(
user,
logTradePosition(user),
direction,
size,
tradeReturn,
spotPrice,
leverage

6 Fix Review Findings

6.1 Protocol Value Drainage Through Liquidation Manipulation e

Resolution

This issue was fixed in commit fOb4ea5bad514459d9dfdbc3bc05417219¢c9864d. The Denaria team added an Exponential
Moving Average (EMA) of the slippage registered for short and long trades, updated up to once per block. When liquidating
the system checks if the slippage during the liquidation would exceed this average by a margin (e.g. 3x average). If that’s the
case it deems there’s an exploit being carried on and it uses spot price for the liquidation.

Description
This issue was found during the fix review, and was a result of the attempt to fix issue issue 5.2.

The protocol implements a bad debt protection mechanism in the liquidation system to that attempts to prevent insolvency by
checking if curve manipulation would push a user’s losses beyond their available collateral. When this threshold is reached, the
system falls back to spot pricing under the assumption that fair market rates will prevent bad debt generation.

However, this protection mechanism contains fundamental design flaws that create systematic exploitation opportunities rather
than genuine risk mitigation. The protection operates on a per-transaction basis without considering the cumulative impact of
liquidation discounts or the sustainability of positions after partial liquidations, creating windows where attackers can extract
maximum value while technically staying within the “safe” parameters.

Root Cause

The core vulnerability stems from the protocol’s reliance on liquidation discounts calculated as percentages of manipulated
prices combined with insufficient forward-looking solvency checks. Attackers can exploit this by using micro-liquidations with
extreme price manipulation to drain a user’s effective collateral up to the exact threshold where bad debt protection would
trigger, leaving positions at precisely 0% margin ratio.

This setup enables a two-phase extraction strategy where:

1. The first liquidation extracts all available collateral through curve manipulation

2. The second liquidation applies maximum discounts to the remaining position at spot prices, generating substantial bad debt
that gets socialized across the protocol

The combination of legitimate maximum leverage positioning, strategic collateral withdrawal, and systematic liquidation
exploitation creates a risk-free profit mechanism that fundamentally breaks the protocol’s economic security model.

Example

The strategy combines legitimate maximum leverage usage with collateral withdrawal to the MMR limit, followed by systematic
liquidation exploitation. The massive bad debt gets socialized across the protocol’s LPs and insurance fund, representing a
complete breakdown of the risk management system.

Phase 1: Enhanced Position Setup with Maximum Leverage Extraction
Reference: Maximum allowed leverage is 15x, MMR = 3.8%

Attacker creates two accounts and maximizes leverage through collateral withdrawal:

https://github.com/denaria-finance/denaria-perp/commit/f0b4ea5bad514459d9dfdbc3bc05417219c9864d

Position Asset Stable Initial Withdraw
Account
Type Debt Balance Collateral n
Main
Short 15,000 15,000 1,000 430

Account
Liquidator
Account

Phase 2: Asymmetric Outcome Strategy
Scenario A: Price Decreases (Natural Profit)

e Short position generates trading profits proportional to 15x leverage

e Close position normally, retain profits + collateral
Scenario B: Price Increases (Exploit Activation)

e Price Movement: 1.00 — 1.001 (+0.1%)
e Main Account Impact: PnL = -15, Effective Collateral = 555
e Status: Position becomes liquidatable (MR = 3.696% < 3.8% MMR)

Phase 3: Double Liquidation Extraction Attack
Step 1: Curve Manipulation Setup

1. Manipulate curve to inflate asset price from 1.001 to 555
2. Execute attack sequence

3. Restore curve to fair pricing (minimize net manipulation cost)
Step 2: First Liquidation (Micro-extraction)

e Target: 1 asset (0.007% of position)

e Manipulated Price: 555 stables per asset (vs 1.001 fair value)
e Liquidation Discount: ~2% (position just became liquidatable)
e User Payment: 555 x 1.02 = 566.1 stables

User Position After First Liquidation:

e Asset Debt: 14,999
e Stable Balance: 14,433.9 (15,000 - 566.1)

o Effective Collateral: O (position now insolvent)
Step 3: Second Liquidation (Full Remaining Position)

e Remaining Position: 14,999 asset debt

User Margin Ratio: 0% (eligible for maximum 10% discount)

Liquidation: 14,999 assets at spot price + 10% maximum discount
User Payment: 14,999 x 1.001 x 1.10 = 16,515.4 stables

Phase 4: Economic Analysis
Total User Payments: 566.1 + 16,515.4 = 17,081.5 stables
User’s Available Resources:

e Stable balance after first liquidation: 14,433.9 stables
e Remaining vault collateral: O stables (already extracted through first liquidation)
e Total available: 14,433.9 stables

Bad Debt Generated: 17,081.5 - 14,433.9 = 2,647.6 stables
Liquidator’s Final Position:

e Asset Debt: 15,000 (acquired entire user position)
e Stables Received: 17,081.5

e Current Market Value: 15,000 x 1.001 = 15,015.0

e Gross Profit: 17,081.5 - 15,015.0 = 2,066.5 stables

Attacker’s Total Gains:
e Liquidation profit: 2,066.5 stables
Attack Economics:

e |nitial Investment: 1,000 collateral
e Net Profit: 2,066.5 - 1,000 =1,066.5 stables (106.65% ROI)
e Bad Debt Generated: 1,066 stables (socialized to protocol)

Remaining
Collateral

570

Effective
Leverage

26.3x

Entry
Price

1.00

This enhanced attack achieves 106% risk-free returns while generating over 1,066 stables of bad debt per 1,000 invested.

6.2 Inconsistent LP Debt Transfer Allows Users to Avoid Debt Obligations (zm (Ve

Resolution

Fixed in commit 689db8b3a5eced33e1d8744b2c89821f261d58a9. _closeandwithdraw Now removes liquidity and applies debts
if there is any LP balance or debt pending to be closed.

Description

In the new accounting system applied during the fixes of issue issue 5.4, the _closeandwithdraw function after removing the LP
position liquidity and applying it to the trader position, it also applies the LP position debts to the trader position, making sure
that the LP position accounting is completely applied to the trader position accounting.

However, other parts of the code call _removeLiquidity without applying the LP position debts. For instance, the 1iquidate function
calls the _removeLiquidity function and doesn’t apply the debts after removing the liquidity. This reduces the stableLiquidity and
assetLiquidity to zero, therefore the system will not longer consider that the user has an LP position. When the _closeandwithdraw
function is called later, it will skip the application of the LP position debts since the LP position no longer has balances.

Additionally, a user that wanted to close and withdraw could avoid paying his debts by first calling the removeLiquidity external
function before calling the cioseandwithdraw function. The external function also doesn’t apply the LP position debts while reducing
the stableLiquidity and assetlLiquidity tO zero, creating the same kind of vulnerability as in previous example.

We believe these mechanisms could be taken advantage of to create zero risk strategies, although the time limited nature of the
fix review doesn’t allow us to fully articulate the attack.

6.3 addLiquidity Doesn’t Consider Trader Position Leverage wedium [V

Description

This issue was found during the fix review of commit f3869fba8db140ed26fbd92cd39793f0679dc749. The new accounting
system separates liquidity provider accounting from trader accounting.

While applying this new accounting system, the addLiquidity doesn’t take into consideration the trader accounting, therefore, a
user could open a position with leverage over what would be normally expected by first opening a trader position at max trader
leverage, and then adding liquidity to the system at max LP leverage.

Appendix 1- Files in Scope

This review covered the following files:

File

src/CL_oracle_middleware/TWAPOracleMiddleware.sol
src/LostAndFound.sol

src/PerpPair.sol

src/Vault.sol
src/manager/FeeManager.sol
src/manager/multiCallManager.sol
src/perpModules/internalPerpLogic.sol
src/perpModules/perpAutoClose.sol
src/perpModules/perpConfig.sol
src/perpModules/perpFunding.sol
src/perpModules/perpLiquidation.sol
src/perpModules/perpLiquidity.sol
src/perpModules/perpTrade.sol
src/storage/PerpStorage.sol
src/util/MatrixMath.sol

src/util/UtilMath.sol

SHA-1 hash

981756b913fa8cfObf615c77eb92cBf17578152¢
f7b582144415d7885fd1526e8fbd6dfee9381f65
530c879a1adbad9883bb4356107b53243ff89be1
12809373125e2¢329000376bcac25ade800a35e8
9f752c56dccadbdba7dbdbe5e4158329072b6ab1
86079830544b546571aa38ec26d523f0c1bbbb40
fB6ceB67chbd80218d4aef8b13064498ff8e78fbc
d55f7fcd3620bf1a97a08de2cf579894091b8383
ae6e3bedfd51ddb81615eb37c65bal8acB3eb389
0a52090312a0ae7db55be17096111c2afd603cbc
26fb1cf06e7e7a34e00f39123b5ce7cB51e7cc25
aaae6c14b3135da28dc678e4bB9ea5109f64108d
abdcd6a4d2546f73581098e8186178b026114f51
ce488927475874e5435d2daB9111e6a4cf193293
c29a04f56dec506b73816deeb82263abc2d2158d1

7b9dd3be9dc12ctd0439516719a308c8b7aab567

Appendix 2 - Disclosure

Consensys Diligence (“CD”) typically receives compensation from one or more clients (the “Clients”) for performing the analysis
contained in these reports (the “Reports”). The Reports may be distributed through other means, including via Consensys
publications and other distributions.

The Reports are not an endorsement or indictment of any particular project or team, and the Reports do not guarantee the
security of any particular project. This Report does not consider, and should not be interpreted as considering or having any
bearing on, the potential economics of a token, token sale or any other product, service or other asset. Cryptographic tokens are
emergent technologies and carry with them high levels of technical risk and uncertainty. No Report provides any warranty or
representation to any third party in any respect, including regarding the bug-free nature of code, the business model or
proprietors of any such business model, and the legal compliance of any such business. No third party should rely on the Reports
in any way, including for the purpose of making any decisions to buy or sell any token, product, service or other asset.
Specifically, for the avoidance of doubt, this Report does not constitute investment advice, is not intended to be relied upon as
investment advice, is not an endorsement of this project or team, and it is not a guarantee as to the absolute security of the
project. CD owes no duty to any third party by virtue of publishing these Reports.

A.2.1 Purpose of Reports

https://github.com/denaria-finance/denaria-perp/commit/689db8b3a5eced33e1d8744b2c89821f261d58a9
https://github.com/denaria-finance/denaria-perp/commit/f3869fba8db140ed26fbd92cd39793f0679dc749

The Reports and the analysis described therein are created solely for Clients and published with their consent. The scope of our
review is limited to a review of code and only the code we note as being within the scope of our review within this report. Any
Solidity code itself presents unique and unquantifiable risks as the Solidity language itself remains under development and is
subject to unknown risks and flaws. The review does not extend to the compiler layer, or any other areas beyond specified code
that could present security risks. Cryptographic tokens are emergent technologies and carry with them high levels of technical
risk and uncertainty. In some instances, we may perform penetration testing or infrastructure assessments depending on the
scope of the particular engagement.

CD makes the Reports available to parties other than the Clients (i.e., “third parties”) on its website. CD hopes that by making
these analyses publicly available, it can help the blockchain ecosystem develop technical best practices in this rapidly evolving
area of innovation.

A.2.2 Links to Other Web Sites from This Web Site

You may, through hypertext or other computer links, gain access to web sites operated by persons other than Consensys and CD.
Such hyperlinks are provided for your reference and convenience only, and are the exclusive responsibility of such web sites’
owners. You agree that Consensys and CD are not responsible for the content or operation of such Web sites, and that Consensys
and CD shall have no liability to you or any other person or entity for the use of third party Web sites. Except as described below,
a hyperlink from this web Site to another web site does not imply or mean that Consensys and CD endorses the content on that
Web site or the operator or operations of that site. You are solely responsible for determining the extent to which you may use
any content at any other web sites to which you link from the Reports. Consensys and CD assumes no responsibility for the use of
third-party software on the Web Site and shall have no liability whatsoever to any person or entity for the accuracy or
completeness of any outcome generated by such software.

A.2.3 Timeliness of Content

The content contained in the Reports is current as of the date appearing on the Report and is subject to change without notice
unless indicated otherwise, by Consensys and CD.

POWERED BY c consensys

https://consensys.io/

